You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

158 lines
9.0 KiB

2 years ago
import numpy as np
import tensorflow as tf
class OptimizerCycle(object):
def __init__(self, preds, labels, pos_weight, norm, d_real, d_fake, GD_real, GD_fake, preds_z2g, labels_z2g, preds_cycle, labels_cycle, gradient, gradient_z, settings):
preds_sub = preds
labels_sub = labels
self.real = d_real
self.settings = settings
# Discrimminator Loss
self.dc_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(self.real), logits=self.real, name='dclreal'))
# self.dc_loss_real = - tf.reduce_mean(self.real)
self.dc_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_fake), logits=d_fake, name='dcfake'))
# self.dc_loss_fake = tf.reduce_mean(d_fake)
# GP_loss = tf.reduce_mean(tf.square(tf.sqrt(tf.reduce_mean(tf.square(gradient), axis = [0, 1])) - 1))
# GP_loss_z = tf.reduce_mean(tf.square(tf.sqrt(tf.reduce_mean(tf.square(gradient_z), axis = [0, 1])) - 1))
# self.dc_loss = self.dc_loss_fake + self.dc_loss_real + 10.0 * GP_loss
self.GD_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(GD_real), logits=GD_real, name='GD_real'))
# self.GD_loss_real = - tf.reduce_mean(GD_real)
self.GD_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(GD_fake), logits=GD_fake, name='GD_fake'))
# self.GD_loss_fake = tf.reduce_mean(GD_fake)
self.dc_loss = self.dc_loss_fake + self.dc_loss_real
self.GD_loss = self.GD_loss_fake + self.GD_loss_real
# Generator loss
generator_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_fake), logits=d_fake, name='gl'))
# generator_loss = -self.dc_loss_fake
generator_loss_z2g = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(GD_fake), logits=GD_fake, name='G_z2g'))
# generator_loss_z2g = -self.GD_loss_fake
# pos_weight,允许人们通过向上或向下加权相对于负误差的正误差的成本来权衡召回率和精确度
self.cost = norm * tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(logits=preds_sub, targets=labels_sub, pos_weight=pos_weight))
cost_cycle = norm * tf.reduce_mean(tf.square(preds_cycle - labels_cycle))
cost_z2g = norm * tf.reduce_mean(tf.square(preds_z2g - labels_z2g))
self.cost = self.cost + cost_cycle
self.generator_loss = generator_loss + self.cost
self.generator_loss_z2g = generator_loss_z2g
all_variables = tf.trainable_variables()
dc_var = [var for var in all_variables if 'dc_' in var.name]
en_var = [var for var in all_variables if 'e_' in var.name]
GG_var = [var for var in all_variables if 'GG' in var.name]
GD_var = [var for var in all_variables if 'GD' in var.name]
with tf.variable_scope(tf.get_variable_scope()):
self.discriminator_optimizer = tf.train.AdamOptimizer(learning_rate=self.settings.discriminator_learning_rate,
beta1=0.9, name='adam1').minimize(self.dc_loss,
var_list=dc_var) # minimize(dc_loss_real, var_list=dc_var)
self.generator_optimizer = tf.train.AdamOptimizer(learning_rate=self.settings.discriminator_learning_rate,
beta1=0.9, name='adam2').minimize(self.generator_loss, var_list=en_var)
self.discriminator_optimizer_z2g = tf.train.AdamOptimizer(learning_rate=self.settings.discriminator_learning_rate,
beta1=0.9, name='adam1').minimize(self.GD_loss, var_list=GD_var)
self.generator_optimizer_z2g = tf.train.AdamOptimizer(learning_rate=self.settings.discriminator_learning_rate,
beta1=0.9, name='adam2').minimize(self.generator_loss_z2g, var_list=GG_var)
# 值得注意的是,这个地方,除了对抗优化之外,
# 还单纯用cost损失又优化了一遍,
# 待会儿看训练的时候注意看是在哪部分进行的这部分优化操作
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.settings.learning_rate) # Adam Optimizer
self.opt_op = self.optimizer.minimize(self.cost)
# self.grads_vars = self.optimizer.compute_gradients(self.cost)
# self.optimizer_z2g = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) # Adam Optimizer
# self.opt_op_z2g = self.optimizer.minimize(cost_z2g)
# self.grads_vars_z2g = self.optimizer.compute_gradients(cost_z2g)
class Optimizer(object):
def __init__(self, model, model_z2g, D_Graph, discriminator, placeholders, pos_weight, norm, d_real, num_nodes, GD_real, settings):
self.opt = self.construct_optimizer(model, model_z2g, D_Graph, discriminator, placeholders, pos_weight, norm, d_real, num_nodes, GD_real, settings)
def construct_optimizer(self, model, model_z2g, D_Graph, discriminator, placeholders, pos_weight, norm, d_real, num_nodes, GD_real, settings):
z2g = model_z2g.construct()
hidden = z2g[1]
z2g = z2g[0]
preds_z2g = model.construct(hidden=hidden, reuse=True)[0]
g2z = model.construct()
embeddings = g2z[0]
reconstructions = g2z[1]
d_fake = discriminator.construct(embeddings, reuse=True)
GD_fake = D_Graph.construct(z2g, reuse=True)
epsilon = tf.random_uniform(shape=[1], minval=0.0, maxval=1.0)
interpolated_input = epsilon * placeholders['real_distribution'] + (1 - epsilon) * embeddings
gradient = tf.gradients(discriminator.construct(interpolated_input, reuse=True), [interpolated_input])[0]
epsilon = tf.random_uniform(shape=[1], minval=0.0, maxval=1.0)
interpolated_input = epsilon * placeholders['features_dense'] + (1 - epsilon) * z2g
gradient_z = tf.gradients(D_Graph.construct(interpolated_input, reuse=True), [interpolated_input])[0]
opt = OptimizerCycle(preds=reconstructions,
labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]),
pos_weight=pos_weight,
norm=norm,
d_real=d_real,
d_fake=d_fake,
GD_real=GD_real,
GD_fake=GD_fake,
preds_z2g=preds_z2g,
labels_z2g=placeholders['real_distribution'],
preds_cycle=model_z2g.construct(embeddings, reuse=True)[0],
labels_cycle=placeholders['features_dense'],
gradient=gradient,
gradient_z=gradient_z,
settings=settings)
return opt
def construct_feed_dict(adj_normalized, adj, features, placeholders):
# construct feed dictionary
# .update()用法就是将()内的字段增加到dict当中
feed_dict = dict() # 创建一个空字典
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['adj']: adj_normalized})
feed_dict.update({placeholders['adj_orig']: adj})
return feed_dict
def update(model, opt, sess, adj_norm, adj_label, features, placeholders, adj, distribution, adj_dense, settings):
# Construct feed dictionary
feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders)
feed_dict.update({placeholders['dropout']: settings.dropout})
feed_dict.update({placeholders['features_dense']: adj_dense})
feed_dict.update({placeholders['dropout']: 0})
z_real_dist = np.random.randn(adj.shape[0], settings.hidden2)
z_real_dist = distribution.sample(adj.shape[0])
feed_dict.update({placeholders['real_distribution']: z_real_dist})
for j in range(5):
_, reconstruct_loss = sess.run([opt.opt_op, opt.cost], feed_dict=feed_dict)
g_loss, _ = sess.run([opt.generator_loss, opt.generator_optimizer], feed_dict=feed_dict)
d_loss, _ = sess.run([opt.dc_loss, opt.discriminator_optimizer], feed_dict=feed_dict)
GD_loss, _ = sess.run([opt.GD_loss, opt.discriminator_optimizer_z2g], feed_dict=feed_dict)
GG_loss, _ = sess.run([opt.generator_loss_z2g, opt.generator_optimizer_z2g], feed_dict=feed_dict)
# GD_loss = sess.run(opt.GD_loss, feed_dict=feed_dict)
# GG_loss = sess.run(opt.generator_loss_z2g, feed_dict=feed_dict)
# g_loss = sess.run(opt.generator_loss, feed_dict=feed_dict)
# d_loss = sess.run(opt.dc_loss, feed_dict=feed_dict)
emb = sess.run(model.z_mean, feed_dict=feed_dict)
avg_cost = [reconstruct_loss, d_loss, g_loss, GD_loss, GG_loss]
return emb, avg_cost